Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 30, 2026
-
Alistarh, Dan (Ed.){"Abstract":["The proof-of-stake (PoS) protocols aim to reduce the unnecessary computing power waste seen in Bitcoin. Various practical and provably secure designs have been proposed, like Ouroboros Praos (Eurocrypt 2018) and Snow White (FC 2019). However, the essential security property of unpredictability in these protocols remains insufficiently explored. This paper delves into this property in the cryptographic setting to achieve the "best possible" unpredictability for PoS.\r\nWe first present an impossibility result for all PoS protocols under the single-extension design framework, where each honest player extends one chain per round. The state-of-the-art permissionless PoS protocols (e.g., Praos, Snow White, and more), are all under this single-extension framework. Our impossibility result states that, if a single-extension PoS protocol achieves the best possible unpredictability, then this protocol cannot be proven secure unless more than 73% of stake is honest. To overcome this impossibility, we introduce a new design framework called multi-extension PoS, allowing each honest player to extend multiple chains using a greedy strategy in a round. This strategy allows us to construct a class of PoS protocols that achieve the best possible unpredictability. It is noteworthy that these protocols can be proven secure, assuming a much smaller fraction (e.g., 57%) of stake to be honest."]}more » « less
-
Quantum annealing (QA) that encodes optimization problems into Hamiltonians remains the only near-term quantum computing paradigm that provides sufficient qubits for real-world applications. To fit larger optimization instances on existing quantum annealers, reducing Hamiltonians into smaller equivalent Hamiltonians provides a promising approach. Unfortunately, existing reduction techniques are either computationally expensive or ineffective in practice. To this end, we introduce a novel notion of non-separable group, defined as a subset of qubits in a Hamiltonian that obtains the same value in optimal solutions. We develop a non-separability theory accordingly and propose FastHare, a highly efficient reduction method. FastHare, iteratively, detects and merges non-separable groups into single qubits. It does so within a provable worst-case time complexity of only O(αn^2), for some user-defined parameter α. Our extensive benchmarks for the feasibility of the reduction are done on both synthetic Hamiltonians and 3000+ instances from the MQLIB library. The results show FastHare outperforms the roof duality, the implemented reduction in D-Wave’s library. It demonstrates a high level of effectiveness with an average of 62% qubits saving and 0.3s processing time, advocating for Hamiltonian reduction as an inexpensive necessity for QA.more » « less
-
Despite the great potential of Federated Learning (FL) in large-scale distributed learning, the current system is still subject to several privacy issues due to the fact that local models trained by clients are exposed to the central server. Consequently, secure aggregation protocols for FL have been developed to conceal the local models from the server. However, we show that, by manipulating the client selection process, the server can circumvent the secure aggregation to learn the local models of a victim client, indicating that secure aggregation alone is inadequate for privacy protection. To tackle this issue, we leverage blockchain technology to propose a verifiable client selection protocol. Owing to the immutability and transparency of blockchain, our proposed protocol enforces a random selection of clients, making the server unable to control the selection process at its discretion. We present security proofs showing that our protocol is secure against this attack. Additionally, we conduct several experiments on an Ethereum-like blockchain to demonstrate the feasibility and practicality of our solution.more » « less
-
Bertino, Elisa; Shulman, Haya; Waidner, Michael (Ed.)Non-interactive zero-knowledge proof or argument (NIZK) systems are widely used in many security sensitive applications to enhance computation integrity, privacy and scalability. In such systems, a prover wants to convince one or more verifiers that the result of a public function is correctly computed without revealing the (potential) private input, such as the witness. In this work, we introduce a new notion, called scriptable SNARK, where the prover and verifier(s) can specify the function (or language instance) to be proven via a script. We formalize this notion in UC framework and provide a generic trusted hardware based solution. We then instantiate our solution in both SGX and Trustzone with Lua script engine. The system can be easily used by typical programmers without any cryptographic background. The benchmark result shows that our solution is better than all the known SNARK proof systems w.r.t. prover’s running time (1000 times faster), verifier’s running time, and the proof size. In addition, we also give a lightweight scriptable SNARK protocol for hardware with limited state, e.g., Θ ( λ ) bits. Finally, we show how the proposed scriptable SNARK can be readily deployed to solve many well-known problems in the blockchain context, e.g. verifier’s dilemma, fast joining for new players, etc.more » « less
An official website of the United States government
